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AbslracL The bz-' + C Z - ~  anharmonic penurbation to the harmonic acilialor is 
studied in two extreme regimes: large anhamanicily mnstanls, mrresponding to b 
iarge, c iarge or 'mih iarge, and Smaii anhamonieiiy mnsianis. in ihe iomm =se, 
a large order strong coupling expansion in terms of an ad hoc mpansion parameter is 
mnstmcled. In the latter case, the lowest order mrrections to the unpenurkd energies 
are obtained. Elementary sdulions as well as the mnwquences of the self-transformation 
of the Hamiltonian are also analysed. 

1. Introduction 

The spiked harmonic oscillator described by the Hamiltonian 

has quite appealing properties which make the determination of its ground state 
energy a challenging problem. This Hamiltonian is defined in the [0, CO] half-space 
with Dirichlet boundary conditions. In order to have a discrete spectrum at least c 
must be a positive number. 

The study of such a singular potential has relevance in connection with the imag- 
inary time formulation of quantum mechanics and its relation with diffusion theory. 
They give rise to the so-called Mauderphenomenon [l-31, which consists in that once 
the singular part of the potential is turned on, its effects are not completely turned 
off. In the so-callcd diffusion Monte Carlo method [4], which step-by-step integrates 
the Schrodinger equation for a many-body system by using an stochastic algorithm, 
special care has to be taken in the regions where the interaction is strongly repulsive 
or strongly attractive to avoid a blow up of the population of walkers. This is normally 
t m b n -  wbL,l :-+A n r r ~ . . n t  L1 -vu,, hit ", ~ ~ ~ i n n  _,., ".. 2" n, .por ta~c  nmp!ing dri.i.:ng fnnc!ias wit!? wnrnnr'it- fly. "fl. .".- 
cusp conditions 141. 

Our Hamiltonian has a short-distance behaviour of the same kind as the familiar 
Lennard-Jones interactions, widely used to describe quantum fluids at zero tempera. 
ture. In the rariational description of such extended systems [5, 61, one requires, as 

0305-4470/92/051351+22504.50 @ 1992 IOP Publishing Ud 1351 
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the adequate Jastrow correlation factor [7], a bound-state like solution of the two- 
body system with special healing properties at long distances. Wlth regard to another 
many-body theory, the so-called quantum thermodynamics perturbation theory [S, 91, 
based on the lowdensity expansion of the ground state energy of the many-body 
system [lo], is of interest to determine the zero-energy scattering solution of the 
two-particle interaction (111. 

The main point to be stressed with respect to the potential in equation (1) is 
that one never deals with moll perturbations. More precisely, even for very small 
values of both c and b, the effect of the anharmonicities cannot be considered as a 
perturbation because they dramatically change the wavefunction near the origin, The 
required change of the wavefunction, even if restricted to a small region of the space 
(when b and c are small) has to be such that it makes finite the othenuise infinite 
matrix elements of the potential. 

On.the other hand, when either b or c is large, the anharmonic terms do compete 
with the harmonic potential z2 and again none of the terms of the interaction may 
be considered negligible or small. As a consequence, the ground state energy appears 
in these two extreme limits as an expansion in terms of non-integral powers of ad 
hoc effective coupling constants. 

From the mathematical point of new, this problem is a non-trivial generalization 
of the simple spiked oscillator problem. With this name one usually refers to the 
anharmonic mcillator 

R Guardiola and J Ros 

Detwiler and Klauder [12] realized that problems of this kind, or with similar be- 
haviour, had very special properties in the small coupling regime. Later, Harrell 
[13] was able to construct a special perturbation theory, called singular perturbation 
theory, to determine the leading term of the ground state energy for small A, which 
turned out to depend on non-integral powers of the coupling parameter. Moving to 
the other extreme, the strong coupling regime, Aguilera-Navarro et a/ [14] found the 
expansion of the ground state energy. This expansion contains a term diverging with 
A, plus a constant term and plus an expansion in terms of non-integral and negative 
powers of A. 

In a different context, Hamiltonians of the kind in equations (1) and (2) have 
also raised some interest with regard to the numerical algorithms used to integrate 
the Schrodinger equation; in particular, those based on finite differences [15]. The 
abnormal behaviour of the ground state energy as a function of the integration Step 
has Wen assigned [15] to the particularly singular character of the interaction, for 
small values of the anharmonicity constants. 

There are still two other properties to be mentioned with regard to this problem. 
First, this Hamiltonian transforms into itself under the change x - 1/x [lS, 191. 
Secondly, this Hamiltonian possesses infinite sets of elen~entary solutions, i.e. solutions 
which may be written as the product of an exponential times a polynomial containing 
positive and/or negative powers of z [18]. These elementary solutions appear only 
for specific values of the anharmonicity constants. 

The expansion of the wavefunction involving both positive and negative powers 
of x has proven to be a very precise tool for the determination of the ground State 
energy. The method requires the solution of Hill-determinantal equations and has 
been termed [I91 an almost non-numerical method. However, although based on an 
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algebraic analysis, it seems inappropriate to determine the analytic dependence of the 
energy in terms of the coupling parameters. 

The two approaches mentioned, namely the singular perturbation theory and the 
strong coupling perturbation method, require some modifications for their application 
to our problem equation (1). particularly the determination of the r e l e ~ n t  expansion 
parameter. It is the main purpose of this work to adapt these special perturbation 
expansions to our more general case. 

- 

.o 
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Figure 1. The gmund Stale energy and the 68~1 mciled State energy mrrespanding 10 
c = 0.001 as a function of b .  

In order to show the kind of results we want to analyse we present in figure 1 
the behaviour of the two lowest eigenvalues of the Hamiltonian of equation (1) for a 
fixed and small value of c = 0.001 as a function of b in the range ( - 0 . 2 , O . Z ) .  These 
eigenvalues were computed by using the simplest finite-differences method based on 
thn ---l-r~--nt nf thn cnrnnrl rlo&m+&= nnomtrrr h x r  +ha r~mnrl diff~renrpr n-ntnr U,* , C p , P K L . L C " ' v L  "1- U-.&" "u..."Ln.u "y-."LY. ", ...- "..._.I.. 1-1 YP'.".V. 

divided by the integration step squared, D2 - 6 2 / h 2 ,  combined with the Richardson 
extrapolation method (see (16, 171). The abrupt change of the ground state energy 
at a value of b around -0.1 is really surprising because, in a very small interval the 
energy jumps from values close to the unperturbed energy, 3, to large and negative 
values. In contrast, the first excited state does not show this abrupt change. 

???e paper & organbed as fn!!ows: In section 2 we present a brief discussion of 
the elementary solutions. Section 3 is devoted to the determination of the leading 
mrrections to the unperturbed energy in the small coupling limit, and in two different 
regimes corresponding to the dominance of one of the anharmonicities over the other. 
Section 4 is devoted to the strong coupling regime. ?\No tasks are solved in this 
section: the determination of the relevant expansion parameter (a combination of b 
and c! and the explicit construction of the perturbative expansion. Section 5 describes 
and exploits the relationships which result from the transformation of the Hamiltonian 
into itself, allowing for the extension of the domain of validity of the perturbative 
expansions. A summary of the results and their limitations is presented in the last 
section. We have also included two appendixes which describe the technicalities 
required for our study. 
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2. Elementaly solutions 

According to the structure of the Hamiltonian, equation (l), the wavefunction will be 
dominated by the exponential term 
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which takes care of the x - M part of the interaction as well as the leading x - o 
part, corresponding to c/x6. 

Consider the action of the full Hamiltonian equation (1) on a generic trial function 

d J ,  = XPf (4) 

given by 

TI.- inh+ hn.4 r : A a  nf rL:r nn..nt:nn ' - . . I1  fnr +hn f n l l n s . r : m "  . m l . . o ~ .  nf L --A D 
I,.+ ,,~,,L-.la'." .,lUL. "I ",U C'1"aL'"L. s .,U11 L". L l l r  L".'""'L.F, "',.YCI "I ", L a,." Y 

(set 1) 

E = 2 p  + 1 2& = p ( p -  1 )  b = ( 2 p -  3)& (6) 

with the exception of p = 0 and p = 1, which correspond to a null coupling, and 
also of the interval [O, 11 which will correspond to a non-normaiizahle trial function. 
Othenvise, p may be any real, positive or negative number. Note that the trial 
function has no nodes (apart from the zeros at the origin and infinity), so that it 
represents the ground state wavefunction. 

A second set of solutions may he generated by considering a slightly more com- 
plicated wavefunction 

d J 2  = (2" + RXPtq)f. (7) 

Now the Schrodinger equation may only be satisfied if q = 0, q = 2 or q = 4 
(negative values may also be formally considered, but in practice they will represent 
the same set of functions). The case q = 0 may be ruled out, because it will just 
reproduce set 1. The case q = 4 is a particular case of the more general situation 
described later (set 3). so that only the &e q = 2 represents a new set of solutions. 
The possible solutions corresponding to a normalizable wavefunction and without 
extra nodes (i.e. with a positive) are the solutions of the set of equations (set 2) 

There may be two solutions for &, but only the solution written in equation (7) with 
a positive sign in front of the square root symbol corresponds to a positive value Of 
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a in equation (9, i.e. has no nodes. In this case there are no excluded regions in p ,  
which may have any real value. 

One can continue by trying other forms for the trial function, with three, four, 
etc. terms. The next set corresponds to the three-term ansatz + p ( 1 +  a lzz+a2z4)f ,  
and the solutions are (set 3) 

E = 2 p + 9  

b = ( 2 p -  3 ) f i  

8c312 - 4 ( 3 p 2  + 9 p  + 4 6 ) c +  2 (3p4  + 18p3 + 7 1 p 2  f 132p + 2 1 6 ) ~ ' ' ~  

- p ( p 5  + 9 p 4  + 25p3 + 15p2 - 2 6 p  - 2 4 )  = 0. (9) 

Again p may be positive or negative. After a numerical investigation of these 
equations we have not found any excluded region. Note however that only one of the 
roots of the cubic equation for .'I2 fulfils the two conditions of being positive and 
corresponding to a solution without nodes. The equations (9) have several particular 
cases corresponding to the roots of the independent term of the last equation. All 
these solutions correspond to integer values of p, and are 

p = 1 , - 4  2+=29+*  

p = - 1 , - 2  2 & = 2 0 + &  

p = o , - 3  2 & = 2 3 + a  

with the corresponding values of b and E from the first two equations of (9). 

0 

Figure 2. Curves connecting lhe parameler pairs ( b , c )  mrrespanding to lhe elementary 
salulion sets described in the lext. mere iS a mmplex slruclure near c = 0 in the line 
labelled 1 which cannot be appreciated in lhis Rgure. 

Figure 2 shows in the plane ( b ,  c )  the curves connecting the elementary solutions 
for the three mentioned sets. Note that there is a small region around b = 0 and 
c = 0 with a strange behaviour which cannot he appreciated in this figure, which will 
be discussed later. The elementary solutions may serve as a test for other approximate 
methods. However, they are not useful for studying the small coupling limit, even 
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if this looks reasonable. In the Small coupling regime one seeks for solutions whose 
energy is slightly different from 3, the unperturbed energy. hcusing on set 1 this 
would mrrespond to p = 1 + E ,  E > 0, and correspondingly, at the lowest order in 6, 

R Guardiola and J Ros 

E = 3 +- 26 c = e2/4 b = - e / 2 .  (11) 

However, there is yet another solution with small values for b and C, namely the case 
p = --E, E > 0, where 

E = 1 - 2c c = e2/4 b = -3612. (12) 

Certainly it is quite surprising that so a small change, from b = -612 to b = 
-3612,  is able to change the energy from 3 to 1. One may conclude that the origin 

for small values of the anharmonicity constants. 
ki the $iiie [ b ,  C) b a COG$= @it aiid that oiii piobkiii has a khavioiii 

3. The small coupling expansion 

It h mnvenient 
on the spiked harmonic oscillators [13], focusing on the case z2 +- c / x 6 .  For small 
values of c Harrell found that the ground state wavefunction should be. expressed 
as the product of the unperturbed harmonic oscillator function uo = zexp(-z2/2) 
times a correcting factor W(z,c) given by 

start this seaion d t h  a brief &sriptinn nf Harre!!'s hvestigatinn 

W(z! c)  = I C : : ? ! C ' / ~ X - ~ ! Z ) ! ~ ' / ~  (13) 

where K is the modified Bessel function. The shape of the correcting factor may he 
analysed by using the limiting forms of the modified Bessel function for very small 
(large z) and very large (small z) values of its argument. The corresponding limits 
are 

and 

2-0 lim W(Z,C) = ~ ~ - " ~ e x p ( - J c / 2 z ~ )  (15) 

so that the unperturbed wavefunction is modified only in a small region around the 
origin. By using this ansatz Harrell obtained the lowest order correction to the energy 

Finally, we should mention another appealing characteristic of Harrell's work. 
It iS that he did not in fact require the full expression of the correcting factor 
W ( z , c )  to compute the relevant matrix elements. In fact only the limiting forms 
were needed. So he bypassed the formidable task of evaluating the integrals involving 
the unperturbed wavefunction, the correcting factor and the various parts of the 
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Hamiltonian. Unfortunately we cannot use Harrell's approach in OUT more involved 
problem with two spikes, 1 /x4  and 1/x6. 

We have used an alternative method, valid when the z - ~  anharmonicity is much 
less important than the z - ~  anharmonicity. It consists of a wriational calculation 
with the non-orthogonal basis 

rIr N -  - N N ~ ~ - ~ ~ e x p ( - x ~ / 2  - f i / 2 x z )  (17) 

where HN is a convenient scaling factor given by Nl = 1 and NN = c ~ / ' - ' / ~ .  The 
state N = 1 corresponds to the unperturbed oscillator ground state wavefunction 
corrected at short distances by the exponential factor of equation (15). In principle 
N should take positive and negative integer values, cf [19] but we have found that 
negative values of N do not contribute to the leading energy correction. 

'lb establish the form of the energy dependence on the perturbation parameters it 
is convenient to consider the simplest variational calculation involving only the N = 1 
state. The expectation value of the Hamiltonian turns out to be (see appendix A for 
more details) 

/tl# \ = 1 1 " , = 1 / - - , " ~ ,  I U l l T l  \ - I "I P,.l/4 TT'C I A, . I /Z  + 2bc-1/4]exp(&2c1/4) (18) 4 

and the norm 

(19) 
(ql1ql) = $1 Js; + 2c1/4)exp(-2c1/4). 

Then the lowest order correction in c is proportional to c1f4, as expected, and the 
lowest order correction in b is proportional to the unexpected combination b/c1l4. 
As far as we are building the x - ~  perturbation on top of the z - ~  one, our result will 
only be valid when 

c << i t < ,l!Z (20) 

where b may be negative, whereas c must be obviously positive. 
This suggests to define new expansion parameters 

q = c  1/4 0 = b / c 1 f Z  (21) 

and to expand everything up to first order in q and U. There remains at this order 

E F;: 3 + 2 q +  207~. (22) 

The coefficient 2 of q in this equation should be compared with Harrell's exact re- 
sult 1.5255, so that we are probably on the right path to obtaining a good description. 
?b improve the values of the leading correcting terms we just solve the generalized 
eigenvalue equation 

det('#N(H - E[*,) = 0 (23) 
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at the lowest orders in q and U .  All technical details are omitted, for inclusion in 
appendix A. Table 1 lists the values of a and 0 describing the small coupling regime 
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as 
E % 3 + a c ' f 4  + p b / c 1 I 4  (24) 

for various sizes of the basis, up to ten states. In the table we also include the 
exact value of a from Harrell [13] as well as the value of @. The latter has been 
determined by a numerical integration of the Schriidinger equation for c = and 
b = h1 x loT3 up to f4 x and afterwards computing the derivative with respect 
to U .  The integration of the Schrijdinger equation was carried out, as explained in 
the introduction, by using the simplest finite-differences algorithm and then using the 
Richardson extrapolation method to increase the precision of the result. Note that 
because of the singular character of the potential the use of higher order integration 
rules (like the Numerov method) will not produce more precise results than the 
simple rule used here [20]. 

Looking to the evolution of the values of a and p with the number of basis 
states one realizes that the expansion is acceptable but nevertheless it converges very 
slowly towards the exact values. This reflects the inadequacy of the basis. In fact, 
the basis states do satisfy the long distance behaviour of the small coupling solu- 
tion, equation (14) but they do not represent faithfully the small distance behaviour, 
equation (15). 

A better starting state could be 

where q = c1I4. This wavefunction has the proper limiting dependence on z, both 
near the origin and at large distances, when g has the value 

z 2.09209924. (26) = r2(3/4) 

Let us first obtain the upper bound to a, equation (24), related to this wavefunc- 
tion. This requires the evaluation of the norm as well as the expectation value of the 
Hamiltonian equation (1) at b = 0, at the leading order in q. 

The expectation value of the Hamiltonian requires the computation of the integral 

) = l m d z e x p  [-z2 - $1 [Rz2-2gqz+q2(g2+2) 

(27) 
x + q 9  4 ( z  + + 4(z 3g3q3 + 9v)3 1 29113 (4g4+ + 392 - 4)q2 

at the first order in q. The small q limit of the first three integrals of the square 
bracket are easily evaluated by using the method described in appendix A. For the 
remaining three integrals it is convenient to make the change of variables z -+ q / t .  
This results in 
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The value of the square of the normalization at lowest order in TJ is much simpler, 

By combining equations (28) and (29) one may obtain the value of a of the 
expansion of the ground state energy, equation (24). Once g is substituted by its 
value, equation (26), and the integrals appearing in equation (28) are evaluated 
numerically, the small c limit 

E(6  = 0) 2: 3 + 1 . 5 5 5 0 4 ~ ~ 1 ~  (30) 

is obtained which is very close to the exact result of Harrell [13] quoted in the last 
row of tabie 1. 

lhbk 1. The various upper bounds for the mefficients m and P of the mall mupling 
apansion mrresponding to equation (24) for several values of the dimension of the 
space. The last row, labelled 'Exact'. includes the value of Harrell 1131 for a, and the 
numerical approximation for p .  

I 2 2 
2 1.8182 1.6860 
3 1.7518 1.5722 
4 1.7157 1.5108 
5 1.6923 1.4713 
6 !.6757 1.4483 
7 1.6632 1.4222 
8 1.6532 1.4056 
9 1.6451 1.3922 
10 1.6384 1.3809 
Eract 1.5255 0.9605 

The perturbative correction related to the b/x4 terms may also be computed in 
a similar way. The relevant matrix element is 

After the change of variables x i q / t ,  there remains, at the leading order in TJ, the 
value 

Again the integral is computed numerically, and the final expansion of the ground 
state energy with this approximate wavefunction in the c -+ 0 limit with 6 << c l I 2 ,  

turns out to be 

E % 3 + 1.555 O ~ C ' / ~  + 1.068 5 6 6 / ~ ' / ~  (33) 
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a result very close to the expansion quoted in the last row of table 1. We should 
mention, however, that it is not clear how to improve this calculation based on the 
wavefunction I,, equation (Z), in an analogous way to the one used at the beginning 
of this section with the basis of equation (17). 

Let us now consider the other small coupling regime, namely when the z-4 pertur- 
bation is much more important than the z-6 perturbation. In this case, the correcting 
function W has a simple form [13], and the leading form of the wavefunction valid 
for small b and c = 0 is 

R Guardiola and J Ros 

I = zexp(-z' /2  - &/z) (34) 

the energy being 

(35j U - 2 L A .  K. 
Y - U T 7" Y ,  , I  

'Ib compute the correction due to the z-6 anharmonicity we may again use the 
variational principle, to leading order in the relevant parameter 

X = 2 4 .  (36) 

The norm is simply fi/4. In order to compute the expectation value of the 
perturbation, ( ~ I Z - ~ I I ) ,  we split the integration intelval into two parts 

q A  
I ,  = 1 ~ - ~ e x p ( - z '  - X / z )  d z  (37) 

and 

q being a free parameter. One then has the following lower and upper bounds 

clA 

exp(-q2X2) 1 ~ - ~ e x p ( - X / z ) d z  < I ,  < ~ - ~ e x p ( - X / z ) d z  (39) 

and 
m m 

exp(- l /q)  ~ - ~ e x p ( - z ' ) d z <  Ib < ~ - ~ e x p ( - z ' ) d z .  (40) 
J q A  J q A  

The integrals bounding I, may be computed analytically, and it is also quite easy 
to get the leading term in X of the integrals bounding I , ,  with the result 

(41) 

Choosing q to take the value which maximizes the lower bound and the value which 
minimizes the upper bound (note that the values of q for the lower and upper bounds 
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may be different), with the fortunate result that both limits are the same and equal 
to 2/X3,  so that in this regime we have 

provided that 

b e l  c << b2 (43) 

with both b and c positive. 
The main results of this section are the two small coupling regimes given by 

equation (24) with the conditions of equation (20), and equation (42) in the domain 
determined hy equation (43). Note, however, that there exists still a thud case 
corresponding to the regime where both perturbations are of the same importance. 
This case will be discussed in section 5. 

4. The strong coupling expansion 

The shape of the interaction potential for large values of b, or large values of c, 
or both large, is very different from the shape in the case of small anharmonicity 
parameters. Instead of having just a spike very close to the origin, now the potential 
resembles a wide valley extending from x = 0 up to I = 03 with a minimum in the 
middle. Again none of the terms of the potential may be considered as small in the 
sense of perturbation theory. 

To compute the ground state energy we may follow a method borrowed from the 
1/N expansion of Witten [21], where N is the number of dimensions of the space, 
for the study of the hydrogen atom. This method was successfully applied [14] to the 
simple spiked oscillator x 2  + A / x m ,  as well as to the anharmonic xN potential in an 
N-dimensional space [22]. The basic idea underlying this strong coupling expansion is 
to seat down at the minimum of the potential (which will correspond to a global shift 
of the energy), then construct a one-dimensional harmonic oscillator centred at this 
point with a shape parameter related to the second derivative of the full potential at 
the minimum and, finally, compute the effect of the rest of the interaction by means 
of an almost standard perturbation theory. The minimum of our potential is located 
at 2 = zm satisfying the equation 

(44) 2 x' - 2bx - 3c = 0. 

For both c > 0 and b > 0 we have the bounds on z, 

1;>3c xk > 2 b  (45) 

i.e. z, will be a large number for b or c large. The value of the potential at the 
minimum is given by 

V(Z,) = - 4xk 3 (1 + $) 
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where we have introduced the parameter 
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(47) y = b / x k .  

For b > 0 and c > 0, one has y < 112. The second derivative b 

V " ( x , )  = 1 6 ( 1 -  712) (4) 

and the remaining derivatives are given hy the closed formula 

where ( z ) ~  is the Pochhammer symbol. 
Following the steps described earlier we change variable by moving to a new origin 

of coordinates located at I , ,  so that for t = 2: - x ,  there results the equivalent 
problem 

where E-, is the minimum potential energy, equation (46), 

E-2 = (4 + ~ ) / 3  

the oscillator constant a is 

a = 2- 

and the constants defining the perturbation are 

We have introduced the relevant coupling constant 

X = l / X , .  (54) 

The ground state energy of the new Hamiltonian will have a diverging term 
E - z X - 2 ,  the sub-index - 2  reflecting the fact that this quantity is proportional to 
A-,, plus the zero-point motion of the harmonic oscillator, 

E,  = a (55) 

which is of the order zero in the effective coupling constant, plus all the perturba- 
tive corrections corresponding to the last term in the Hamiltonian. Due to parity 
considerations only even powers of X contribute to the ground state energy @ut odd 
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powers contribute to the wavefunction corrections). In mnclusion, the ground state 
energy is given by the expansion 

E = E - , X 2  + E,  + EkXb 
k, even22 

in terms of the effective coupling constant X = l/xm. 
It is convenient to make some comments on this expansion of the energy. The 

anharmonicity parameters b and c appear almost only through the combination mr- 
responding to xm. There is also a residual dependence on b and c through the 
other parameter y hut the range of variation of this quantity is small (from 0 to 
for positive b and c )  and does not play a relevant role in the convergence of the 
expansion. 

The actual dependence of I, on b and c may be written down by solving equa- 
tion (44). This is actually a quartic equation in I;, hut the resulting expression is too 
cumbersome to be of any practical interest. In actual calculations it is better to solve 
this equation by using the time-honoured substitution method due to Bernouilli, 

which converges very quickly. 
Even if we have paid special attention to the case in which both b and c are 

positive, the method can also be applied to negative values of b. Note, however, that 
c must always be positive. The only condition to have in mind for the application of 
the strong coupling expansion is that zm must be large. 

lsbk 1 The amparison of the slmng mupling expansion with some exacl msulls. Each 
mlumn mrresponds lo an elementary solution of one of the Y L S  described in section I. 
For each .mIulion ne list the values of the parameten b and e, the exact value of lhe 
energy and the wlue z,,, of the minimum of the interaction. The last rows include the 
strong limit expansion, and the bbel of the tint mlumn indicates the number of terms 
mnsidered in the strong coupling expansion. 

Set 
b 

E(exact) 
c 

2, 

0 
2 
4 
6 
8 

I O  
12 
14 
16 
18 
20 

set I 
1 
1 
5 
1.25488 

4.875 229 
5.069 840 
4.961 81 
5.015 19 
5.007 04 
4.967 986 
5 054 ~2 
4.957 no5 
4.9M 698 
5.560719 
3.588351 

Se1 1 
9 
9 
7 
1.7321 

6.915322 

6.995461 
7.W0204 
7.W0690 
6.999415 
7 . m  m5 
7 . W  189 
6.999563 
7.W386 
7.000867 

7.021 248 

Se1 2 
-7 
49 
7 
1.7837 

6.989695 
7.ooh559 
6.995 79 I 
7.002916 
6.997789 

6.998 435 
7.001 343 
6.999002 
7.Mx)256 
7.001 452 

7.001814 

Se1 2 
45 
225 
I I  
24274 

10.956593 
11.006 935 
10.998913 
11.000 121 
I1.000 021 
10.999975 

10.999996 
10.999 998 
11.00002 
10.999997 

~~ I I .WO ~~~ o n  ~~~ 

Se1 3 
-24.5125 
fKl.8623 
II 
2.4942 

10.982a9 
10.003 993 
10.998942 
II.000315 
10.999898 
11.000 033 
10999991 
I1.owMo 
1l.Mx)MZ 
10.999 996 
ll.000W4 
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The calculation of the coefficients E,  of the strong coupling expansion is de- 
scribed in appendix B. We show in table 2 some comparisons of the strong coupling 
expansion with exact results for the ground state energy. For this comparison we have 
selected some cases corresponding to the sets of elementary solutions described in 
section 2, including also negative values of b. In all cases the value of I, is not too 
large, ranging from 1.25 to 2.50, so that the comparison is not the m a t  favourable. 
Nevertheless, the results of the strong coupling expansion are vely good, with the 
only exception m the case b = c = 1 where the expansion shows symptoms of insta- 
bility. Of course this series should have some radius of convergence which cannot be 
determined unless one has a closed expression for the coefficients. 

5. The self-transformation of the Hamiltonian 

By changing x - 1/1 in equation (I), and afterwards introducing a new wavefunction 
as the old one divided by I, there results the differential equation 

In order to obtain an equation formally equivalent to equation (1) it is still necessary 
to scale the new independent variable x by the quantity c-lI4, so as to remove 
the coefficient c from the harmonic potential. Then this gives the same starting 
Hamiltonian with a new set of parameters related to the starting set of parameters 
by the equations 

(60) i, = -C1/2E E = Ij. = -bC-1/2. 

The meaning of these substitution rules is fairly obvious: if the eigenvalue E is 
known for given values of b and c, then the eigenvalue corresponding to the set of 
parameters k and E as given by the first ONO equations (60) is E as computed by 
means of the last equation of set (60). 

r--e ".." 
strong aoupling formulae, so as to get specific equations relating the energy to the 
anharmonicity parameters, with a different domain of validity. Special care is needed 
so as to use the perturbative expansions in their strict domain of validity, othelwise 
the inversion may lead to nonsense results. 

For example, to invert the expansion given in equation (24), and in addition to 
consider the restrictions given in equation (20), care has to be taken so that the 
next neglected term (which is proportional to c1f2) is much smaller than the last 
considered term, which is proportional to b/c1I4. Then for a small enough value of 
c, the corresponding b must lie in a strip delimited by the conditions 

m.psp rpp!acpmefi! m!es afi tl" trafignrm *..e pr.e.in.. we& mcnlino 2nd 

c >> b2 >> c 3 f 2 .  (61) 
- 
'lnese two conditions in turn delimit the domain of the transformed coupling con- 
stants. In this case there results the new weak coupling expansion 

) (62) 
1 E rz -(a + 3c-'I4 + b ~ - ~ / ~  
P 
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which is valid for small c and for values of b in a small interval centred around 
-c1/'(3 + ac1I4). The size of this interval is quite small, but the derivative of the 
energy with respect to 6 k very large, i.e. 

d E l d b  zz C - ~ / ~ / P .  

In other words, it is still a fairly large domain. 

10 

0 

- 5  

c=O.O01  E5k - t o  - .m - . l o  .no . l o  b 

(63) 

n 

Figure 3. Ihe small mupling expansions for lhe ground state energy. Line 1 mrrespands 
10 equation @4), and line 2 to equation (42). The lines 3 and 4 are the transform of 
equations (24) and (42), rspectively. The mnfinuous a w e  represenls the numerically 
mmputed values of the energy. 

It is not possible to invert the other small coupling expansion, corresponding 
to equation (42), because this gives a transcendental equation. However, it is still 
possible to compute the energies and domains corresponding to the transformation 
equations. This is shown in figure 3, which corresponds to c = 0.001 and b in the 
interval ( -0 .2,0.2) .  In addition to the numerically determined values of ground 
mte energy, there appear 6.:: "the: 8!mnst straight !ices. E e  !ice near b = n ", 
labelled 1, corresponds to the weak coupling expansion given in equation (24). Its 
transformed equation is the line near 6 = -0.1, labelled 3. The line 2, centred near 
6 = 0.15, corresponds to the other small coupling expansion equation (42), and is 
transformed into line 4, which is the almost vertical line at the left of the figure. 
We note that the last [WO cases do not strictly fulfil the required restrictions given in 

determined eigenvalue and the perturbative expansion. 
In conclusion, by using the small coupling expansions and the transformation 

equations (60), we may cover all the domain around c = b = 0. 
The transformation equations may also be used in the case of the strong coupling 

expansion, but in this case it is again not possible to get a closed formula because 
the dependence on the anharmonicity parameters is quite involved. Note, however, 
that the transformation allows to extend the domain of validity of the strong coupling 
expansion to large and negative values of b, as implied by the first of equations (60). 

Finally, let us simply mention that the ( b ,  c )  lines corresponding to the elementary 
solutions transform into themselves, so that no new information is obtained from these 
solutions. 

qfiation (20)). n.$ h the rpzsog for the small difference.s herw&?n the n.mrric.!!y 
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6. Summary 

In this paper we have determined the analytic behaviour of the ground state energy 
of the x2 + b/x4 + c / x s  anharmonic oscillator corresponding to several regimes of 
the anharmonicity constants: 

R Guardiola and J Ros 

(i) For c < 1 and b < c1I2 the leading terms are 

E % 3 + a c ' I 4  + pb/c 'I4  (64) 

where a = 2r(3 /4) /* 'IZr(5 /4) ,  [13], and several approximate values for p are 
shown in table 1 and in equation (33). 

(ii) For b < 1 and c (< bZ the leading terms are 

E % 3 + 4(b/?r)'I2 + c / ~ ' / ~ b ~ / ~ ,  (65) 

These results do not directly cover all the accesible region around b = c = 0. 
However, the use of the  self-transforming property of the Hamiltonian covers all the 
area around null values of the anharmonicity constants. 

Finally, we have determined the analytic behaviour of the ground state energy 
for large values of the anharmonicity constants. This in turn implies large values of 
I,, the abscisa of the minimum of the potential. The ground state energy depends 
on b and c mainly through T , .  The expansion has a term diverging as x i ,  then 
a constant term and finally an expansion in powers of l /xa .  Again the use of the 
self-transforming property of the Hamiltonian permits the extension of the validity 

all the region around the point c = CO. 

dCEnin f g y  !argc ;,n!ces of c !n:g nsd pgntb;- :'n!'.ps of b, -;rering is th& erny 
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Appendix A. The calculation of the small coupling expansion 

The question is to solve the generalized eigenvalue equation (23) corresponding to 
the Hamiltonian equation (1) in the non-orthogonal basis given in equation (17). 
Moreover, we are interested only in the lowest orders of the parameters 7 and U 

introduced in section 3. The matrix elements of interest are 
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The relevant integrals are of the generic form 
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for even values of p, which may be generated from I, ,  

lo = (J i i /z)exp(-2JFTi) /& 

by computing derivatives with respect to v (for p > 0) or p (for p < 0) and 
substituting afterwards U -+ 1 and p + q2. Then the determinant of the matrix is 
computed and solved in terms of the eigenvalue W .  

This process may be easily carried out with the help of an algebraic code. We 
used REDUCE [U] to carry out this algebraic calculation and the resulting program is 
so simple and short that we prefer to write it down instead of attempting to explain 
all technical details related to this computation. The code is listed at the end of this 
appendix. 

The correspondence of the variables in the code with our current notation is 

Y + V  
s-U 
N - U  

M - + P  (A4) 

The procedure INTEGRAL computes lp  as described earlier. Note that all integrals 
have been scaled by fixing I ,  = 1, which is called AUX in the code. The procedure 
NORM defines the scaling factors q2'-5/2 as outlined in section 3, their role being 
to avoid negative powers of q in front of the matrix elements. Next there is a long 
statement (14 lines) which evaluates the matrix elements. It contains two chained 
DO-loops, their indices corresponding to the labels of the states. The assignment to 
the variable Z Z Z  is a plain translation of equation (Al). The only tricky point is 
related to the asymptotic rules Y**2=0 and S**2=0. This is a special instruction of 
REDUCE which will skip all terms depending on powers of Y and S greater than or 
equal to 2. The individual pieces needed to compute a given matrix element contain 
positive and negative powers of high degrees on q and cr, hut once the combination 
called ZZZ is evaluated it is regular, and the leading powers in qo and q' may he 
extracted. Once simplified ZZZ and stored in H (  IC, j ) ,  the rules must be cleared for 
the next computation. The rest of the code is self-explanatory. 

Algorithm 
%Before inputting this package define ND with a numeric value 
% AJgori!hm !o define th.e basic i!!tegn!s 
AUX = l/(SQRT(N) 'EXP(2*SQRT(N*M))); 
PROCEDURE INTEGRAL(P); 
IF P=O THEN 1 
ELSE IF P>O THEN SUB(N=l,SUB(M=Y**2,(-1)'*(P/2)*DF(AUX,N,P/2)/AUX)) 
ELSE SUB(N= l,SUB(M=Y*'2,(-1)*"(-P/2)*DF(AUX,M,-PR)/AUX)) ; 
% 

I 
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% Scaling of states to avoid powers of Y in the denominator 
PROCEDURE NORM(K); 
IF K = l  THEN 1 ELSE Y"(2'K-5/2); 
% 
B:=s*y**2 
% Note that C=Y**4 
% 
% Matrix elements 

R Guardiola and J Ros 

MATRIX H(ND,ND); 
FOR E=l STEP 1 UNTIL ND DO FOR J:=K STEP 1 UNTIL ND DO 
BEGIN 
% W is the eigenvalue. First mmpute with all powers of Y 

+(2*Y**2-4*J**2+10*J-6)*INTEGRAL(4-2*(K+J)) 

ZZZ:=ZZZ*NORM(J)*NORM(K); 
% Then remove unwanted powers in Y and S 
LET Y*'2=0; LET S**2=0; 
H(K,J):=ZZZ 
CLEAR S"2; CLEAR Y**2; 
% And the symmetric term 
H(J,K):=H(K,J); 
END, 
% Generalized eigenvalue equation 
r.Er y**2=0 LET s**2=n 
EQUATION: =DET(H); 
% Solve it 
EQUATION: =SUB(W=3+A'Y,EQUATION); 
% After this substitution the leading term is null, and the rest 
% is linear in A, so 
A= -SUB(A=O,EQUATION)/SUB(A=O,DF(EQUATlON,A)); 
% Finally, expand in powers of S 
A:=SUB(S=O,A)+S*SUB(S=O,DF(A,S)); 
% End of the algorithm 

7.7.2:=(7 - 4*J-W)'!NTIjGR_AL(h-2*~K+J)) 

+(4'J'Y* *Z-3'Y * '2+B) *INTEGRAL(Z-Z*(K+ J)); 

Appendix B. The calculation of the strong coupling expansion 

The purpose of this appendix is the determination of the series expansion of the 
ground state energy of the Hamiltonian given in equation (50) in powers of the strong 
mupling constant A. With the change of variable 1 - x / f i  and after removing the 
&independent term, there remains the Hamiltonian 

where 
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and Do = 1. We are searching for the expansion of the ground state energy of h in 
p e r s  of A, i.e. 

The most immediate way to proceed is to use a modified version of the familiar 
RayleighSchrodinger perturbation theory, as in [14]. There are, however, other more 
efficient methods based on the polynomial character of the perturbation potential. 

One such method consists of extending the algorithm used by Bender and Wu 
(241, also known as Dalgarno's F-functions method [U], for the computation of the 
small coupling expansion of the t4 anharmonic oscillator. The wavefunction is written 
as 

m 

*=O 

where p,(t)  are polynomials of degree 371 whose coefficients are recursively deter- 
mined, together with the coefficients E,, after a direct substitution of the wavefunc- 
tion in the Schrodinger equation. 

However, the most efficient way to treat our perturbed cscillator is to use the 
hypervirial perturbation theory [16]. This method is based on the relation 

ZE(f') = (fV' + Zf'V) - (f"')/2 (B5) 

between expectation values taken with respect to any exact eigenstate of the full 
Hamiltonian. We will focus on the ground state. In equation (BS) f is an arbitrary 
function of m, provided the expectation values are defined (not infinity). By choosing 
f = #+*, with N 3 -1, one obtains the set of equations 

2 ( N  + l)E(tN) = Y F ( 2 N  + k + 4 ) D , ( 2 N + Z S k )  - N(NZ - 1)(zN-')/2. (B6) 

The next step is to expand both the energy and the moments in terms of the coupling 
constant A, 

k=O 

m 

- F: = E , A k  (B7) 
p=0 

and 
m 

(mr) = z A F , , A k .  
"-" I - -  

The coefficients E, and A,,, are the quantities to be determined. Some of them 
have known values. Eo is the unperturbed harmonic oscillator energy, 

Eo = 1. (B9) 
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The normalization of the wavefunction requires 
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* O , k  = 'Ok (BW 

and from the known values of the moments of xr with respect to the unperturbed 
harmonic oscillator ground state wavefunction we obtain 

AZk+l ,O = (BW 

and 

By substituting the X expansions in equation (B6) a set of recurrence relations is 
obtained characterized by the integer parameters N 2 1 and n 2 1 

n n 

Z ( N  + i)C En-iAN,i = CPN + 4 + n - I )  
I=0 I=0 

Dn-lAN+n+l-l,l - N ( N z  - 1)AN- l ,n /2 .  W 3 )  

These relations are not sufficient to determine the unknowns. A suplementary con- 
dition is obtained by analysing the effect of a small variation 6 X  of the coupling 
constant, namely 

which is translated into 
n 

(n + ~ ) E N + I  = E(.- I +  1)Dn-i+1An-i+3,i. P15) 
I=0 

For the practical use of these recurrence relations one must jump alternatively from 
equation (B13) to equation (B15) and back again to equation (B13), in a manner 
analogous to the one described in [16]. 

In the long formulae following this paragraph we include the explicit solution of 
these equations. Note that all corrections E, with odd sub-index are null, because 
of parity considerations. Our strong coupling expansion is obtained by substituting in 
this equation the actual values of the constants D,. 

Ez = ( 1 2 0 ,  - l lD?) /16  

E4 = (4800, - 1040D,D1 - 3360; + 13680,D: - 4650;)/256 

E,  = (268800,- 67200D,D, - 46080D,D, + 103360D4D; -28736Dz 

+ 182016D,D,D, - 14454403D:+21312D:- 189232L);D: 

+ 1820280 ,D~  - 39709Di)/4096 
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E, = (7741440D,-2193408OD,D1 - 15482880D,D2 + 37990400D,Dt 

- 17117184D,D3+ 62963712D,D2D, -561684480,D: 

- 7 157 7600; + 61 659 136D4D3D, + 22 978 5600,D; 

- 142829568D4D,D~ + 74813952D4D: + 26984448Di0, 

- 73326080D:Df . .  - 126423040D3D~D, . + 270965760D3D,Df 

-96779520D3D: -7906560D;+ l l9097600D~Dt  

-220481 7600;D;+ 119670288D2D~ - 192508050~)/262144 

E,, = (681246720D,,- 21572812800,0, - 1548288000D,D2 

+4 128768000D,D~-1587511 296D,D,+6620479488D,D,Dt - .  

-6496387O72D7D~-1 348 730 880D,D4+6 306 922 496D,D3D1 

+ 2453 1763200,022 - 16087400448D,D2D: 

+ 9 096 865 792D,D? - 7271055360; + 5 944 147968D5D4D1 

+ 5 195464704D,D3D, - 15591 161856D,D3Dt 

- 1345O395648D,D~DI + 31 28938496OD,D,D~ 

- 12O05747712D5D: +2264 186880D:D2 -7389556736DiDt 

+ 2546483200D,Di - 26226966528D4D3D2D, 

+ 30 198 779904D4D3D7 - 3 435 356 160D4Dz 

+40051591 168D4D~D~-52613804544D,D~D;P 

+ 15147285888D4D~-4502528000D~D, -5777956864DiDz 

+ 40827789312D~D2D~ - 26299471 360DiD;P 

+ 23 751 905 280D3D~D, - 95 328 762 880D3DzD: 

+ 83 114469 120D3D,D: - 18922442 560D3Dy + 938 732 544025 

- 21 126632 192DlD: + 63244 115840D;D: 

- 61 365048672D$'Df + 23 131 433 052D2Df 

- 2 944491 879Di0)/4 194304 
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